Part Number Hot Search : 
EM403B 4ALVCH1 MJE2100 GBPC4016 SB152M ON1311 LB636D7Y LTC1666
Product Description
Full Text Search
 

To Download MAX232EEWE Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  general description the max202e?ax213e, max232e/max241e line drivers/receivers are designed for rs-232 and v.28 communications in harsh environments. each transmitter output and receiver input is protected against ?5kv electrostatic discharge (esd) shocks, without latchup. the various combinations of features are outlined in the selector guide. the drivers and receivers for all ten devices meet all eia/tia-232e and ccitt v.28 specifications at data rates up to 120kbps, when loaded in accordance with the eia/tia-232e specification. the max211e/max213e/max241e are available in 28- pin so packages, as well as a 28-pin ssop that uses 60% less board space. the max202e/max232e come in 16-pin tssop, narrow so, wide so, and dip packages. the max203e comes in a 20-pin dip/so package, and needs no external charge-pump capacitors. the max205e comes in a 24-pin wide dip package, and also eliminates external charge-pump capacitors. the max206e/max207e/max208e come in 24-pin so, ssop, and narrow dip packages. the max232e/max241e operate with four 1? capacitors, while the max202e/max206e/max207e/max208e/ max211e/max213e operate with four 0.1? capacitors, further reducing cost and board space. ________________________applications notebook, subnotebook, and palmtop computers battery-powered equipment hand-held equipment next-generation device features ? ? for low-voltage applications max3222e/max3232e/max3237e/max3241e/ max3246e: 15kv esd-protected down to 10na, +3.0v to +5.5v, up to 1mbps, true rs-232 transceivers (max3246e available in a ucsp package) ? ? for low-power applications max3221/max3223/max3243: 1? supply current, true +3v to +5.5v rs-232 transceivers with auto-shutdown ? ? for space-constrained applications max3233e/max3235e: 15kv esd-protected, 1?, 250kbps, +3.0v/+5.5v, dual rs-232 transceivers with internal capacitors ? ? for low-voltage or data cable applications max3380e/max3381e: +2.35v to +5.5v, 1?, 2tx/2rx rs-232 transceivers with 15kv esd- protected i/o and logic pins ?5kv esd-protected, +5v rs-232 transceivers selector guide pin configurations and typical operating circuits appear at end of data sheet. yes part no. of rs-232 drivers no. of rs-232 receivers receivers active in shutdown no. of external capacitors (?) low-power shutdown ttl tri- state max202e 2 2 0 4 (0.1) no no max203e 2 2 0 none no no max205e 5 5 0 none yes yes max206e 4 3 0 4 (0.1) yes yes max207e 5 3 0 4 (0.1) no no max208e 4 4 0 4 (0.1) no no max211e 4 5 0 4 (0.1) yes yes max213e 4 5 2 4 (0.1) yes yes max232e 2 2 0 4 (1) no no max241e 4 5 0 4 (1) yes autoshutdown and ucsp are trademarks of maxim integrated products, inc. ordering information 16 narrow so 0? to +70? max202ecse 0? to +70? max202ecpe pin-package temp range part 16 plastic dip ordering information continued at end of data sheet. selector guide 19-0175; rev 6; 3/05 pin configurations and typical operating circuits appear at end of data sheet. yes functional diagrams pin configurations appear at end of data sheet. functional diagrams continued at end of data sheet. ucsp is a trademark of maxim integrated products, inc. available for pricing, delivery, and ordering information, please contact maxim direct at 1-888-629-4642, or visit maxim?s website at www.maxim integrated.com. max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers absolute maximum ratings v cc ..........................................................................-0.3v to +6v v+ ................................................................(v cc - 0.3v) to +14v v- ............................................................................-14v to +0.3v input voltages t_in ............................................................-0.3v to (v+ + 0.3v) r_in ...................................................................................?0v output voltages t_out.................................................(v- - 0.3v) to (v+ + 0.3v) r_out ......................................................-0.3v to (v cc + 0.3v) short-circuit duration, t_out....................................continuous continuous power dissipation (t a = +70?) 16-pin plastic dip (derate 10.53mw/? above +70?)....842mw 16-pin narrow so (derate 8.70mw/? above +70?) .....696mw 16-pin wide so (derate 9.52mw/? above +70?) ......762mw 16-pin tssop (derate 9.4mw/? above +70?) ...........755mw 20-pin plastic dip (derate 11.11mw/? above +70?)...889mw 20-pin so (derate 10.00mw/? above +70?).............800mw 24-pin narrow plastic dip (derate 13.33mw/? above +70?) ...............................1.07w 24-pin wide plastic dip (derate 14.29mw/? above +70?) ................................1.14w 24-pin so (derate 11.76mw/? above +70?).............941mw 24-pin ssop (derate 8.00mw/? above +70?) ..........640mw 28-pin so (derate 12.50mw/? above +70?)....................1w 28-pin ssop (derate 9.52mw/? above +70?) ..........762mw operating temperature ranges max2_ _ec_ _ .....................................................0? to +70? max2_ _ee_ _...................................................-40? to +85? storage temperature range .............................-65? to +165? lead temperature (soldering, 10s) .................................+300? electrical characteristics (v cc = +5v ?0% for max202e/206e/208e/211e/213e/232e/241e; v cc = +5v ?% for max203e/205e/207e; c1?4 = 0.1? for max202e/206e/207e/208e/211e/213e; c1?4 = 1? for max232e/241e; t a = t min to t max ; unless otherwise noted. typical values are at t a = +25?.) stresses beyond those listed under ?bsolute maximum ratings?may cause permanent damage to the device. these are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. exposure to absolute maximum rating conditions for extended periods may affect device reliability. r_out; i out = -1.0ma v 3.5 v cc - 0.4 output-voltage high v oh en = v cc , en = 0v, 0v r out v cc , max205e?08e/211e/213e/241e outputs disabled ? ?.05 ?0 output leakage current r_out; i out = 3.2ma (max202e/203e/232e) or i out = 1.6ma (max205e/208e/211e/213e/241e) v 0.4 output-voltage low v ol t_in; en, shdn (max213e) or en, shdn (max205e?08e/211e/241e) v 0.8 input threshold low v il 815 t_in = 0v (max205e?08e/211e/213e/241e) ? 15 200 input pullup current parameter conditions symbol units min typ max v cc supply current i cc ma 11 20 no load, t a = +25? 14 20 510 max211e/213e max232e 715 max241e max205e?08e en, shdn (max213e) or en, shdn (max205e?08e/211e/241e) 2.4 t_in v 2.0 input threshold high v ih max205e/206e 110 110 max211e/241e t_in = 0v to v cc (max202e/203e/232e) ? ?0 input leakage current max202e/203e 15 50 max213e dc characteristics logic shutdown supply current t a = +25?, figure 1 ? 2 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers electrical characteristics (continued) (v cc = +5v ?0% for max202e/206e/208e/211e/213e/232e/241e; v cc = +5v ?% for max203e/205e/207e; c1?4 = 0.1? for max202e/206e/207e/208e/211e/213e; c1?4 = 1? for max232e/241e; t a = t min to t max ; unless otherwise noted. typical values are at t a = +25?.) note 1: max211ee_ _ and max213ee_ _ tested with v cc = +5v ?%. max205e/206e/211e/213e/241e normal operation, figure 2 max205e/206e/211e/213e/241e normal operation, figure 2 c l = 150pf r l = 3k to 7k, c l = 50pf to 1000pf, one transmitter switching all drivers loaded with 3k to ground (note 1) t a = +25?, v cc = 5v v cc = 5v, no hysteresis in shutdown t a = +25?, v cc = 5v t a = +25?, v cc = 5v v cc = v+ = v- = 0v, v out = ?v conditions ns 200 receiver output disable time ns 600 receiver output enable time ? 440 t plhr , t phlr receiver propagation delay 0.5 10 kbps 120 maximum data rate ma ?0 ?0 output short-circuit current 300 output resistance v -30 30 input voltage range v ? ? output voltage swing k 357 input resistance v 0.2 0.5 1.0 input hysteresis v input threshold low 1.7 2.4 v 1.5 2.4 input threshold high units min typ max symbol parameter all parts, normal operation all parts, normal operation max213e (r4, r5), shdn = 0v, en = v cc r l = 3k, c l = 2500pf, all transmitters loaded ? 2 t plht , t phlt transmitter propagation delay t a = +25?, v cc = 5v, r l = 3k to 7k, c l = 50pf to 1000pf, measured from -3v to +3v or +3v to -3v, figure 3 v/? 3630 transition-region slew rate human body model ?5 iec1000-4-2, air-gap discharge kv ?5 esd-protection voltage iec1000-4-2, contact discharge ? all parts, normal operation max213e (r4, r5), shdn = 0v, en = v cc 0.8 1.2 esd performance: transmitter outputs, receiver inputs timing characteristics eia/tia-232e transmitter outputs eia/tia-232e receiver inputs max213e, shdn = 0v, en = v cc 0.6 1.5 note 1: max211ee_ _ tested with v cc = +5v ?%. maxim integrated 3 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers __________________________________________typical operating characteristics (typical operating circuits, v cc = +5v, t a = +25?, unless otherwise noted.) 5.0 0 max232e transmitter output voltage vs. load capacitance max202e-toc1 load capacitance (pf) v oh , -v ol (v) 5.5 6.0 6.5 7.0 7.5 8.0 1000 2000 3000 4000 5000 v cc = 5.5v all transmitters loaded data rate = 120kbps r l = 3k v cc = 4.5v v cc = 5.0v 5.0 0 max202e/max203e transmitter output voltage vs. load capacitance max202e-toc2 load capacitance (pf) v oh , -v ol (v) 5.5 6.0 6.5 7.0 7.5 8.0 1000 2000 3000 4000 5000 v cc = 5.5v v cc = 4.5v v cc = 5.0v all transmitters loaded data rate = 120kbps r l = 3k 5.0 0 max241e transmitter output voltage vs. load capacitance max202e-toc3 load capacitance (pf) v oh , -v ol (v) 5.5 6.0 6.5 7.0 7.5 8.0 1000 2000 3000 4000 5000 v cc = 4.5v v cc = 5.5v v cc = 5.0v all transmitters loaded data rate = 120kbps r l = 3k 5.0 0 max211e/max213e transmitter output voltage vs. load capacitance max202e-toc4 load capacitance (pf) v oh , -v ol (v) 5.5 6.0 6.5 7.0 7.5 8.0 1000 2000 3000 4000 5000 v cc = 4.5v v cc = 5.5v v cc = 5.0v all transmitters loaded data rate = 120kbps r l = 3k 0 0 max211e/max213e/max241e transmitter slew rate vs. load capacitance max202e-toc5 load capacitance (pf) slew rate ( v/s) 5 10 15 20 25 30 1000 2000 3000 4000 5000 +slew rate -slew rate all transmitters loaded data rate = 120kbps r l = 3k 4 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________________________typical operating characteristics (continued) (typical operating circuits, v cc = +5v, t a = +25?, unless otherwise noted.) 2 0 max202e/max203e/max232e transmitter slew rate vs. load capacitance max202e-toc6 load capacitance (pf) slew rate ( v/s) 4 6 8 10 12 14 1000 2000 3000 4000 5000 +slew rate -slew rate all transmitters loaded data rate = 120kbps r l = 3k 5.0 7.5 -7.5 0 3000 max205e?ax208e transmitter output voltage vs. load capacitance -5.0 2.5 max202e toc-07 load capacitance (pf) output voltage (v) 1000 2000 4000 5000 0 -2.5 v cc = +4.5v, r l = 3k 1 transmitter at full data rate 4 transmitters at 1/8 data rate 240kbps 240kbps 120kbps 120kbps 20kbps 20kbps 45 50 20 0 3000 max205e?ax208e supply current vs. load capacitance 25 40 max202e toc-09 load capacitance (pf) supply current (ma) 1000 2000 4000 5000 35 30 v cc = +4.5v, r l = 3k 1 transmitter at full data rate 4 transmitters at 1/8 data rate 240kbps 120kbps 20kbps 10 12 0 0 3000 max205e?ax208e transmitter slew rate vs. load capacitance 2 8 max202e toc-08 load capacitance (pf) slew rate (v/s) 1000 2000 4000 5000 6 4 20 18 16 14 v cc = +4.5v, r l = 3k 1 transmitter at full data rate 4 transmitters at 1/8 data rate fall rise 2.5 5.0 -10.0 0 180 max205e?ax208e output voltage vs. data rate -7.5 0 max202e toc-10 data rate (kbps) output voltage (v) 60 120 240 150 30 90 210 -2.5 -5.0 10.0 7.5 v cc = +4.5v, r l = 3k 1 transmitter at full data rate 4 transmitters at 1/8 data rate v+ v- v out + v out- maxim integrated 5 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers max203e max205e _____________________________________________________________pin descriptions max202e/max232e 15 10, 11 9, 12 8, 13 ground 19 rs-232 driver inputs 13, 14 7, 14 6 4, 5 rs-232 receiver outputs 12, 15 rs-232 receiver inputs 10, 17 rs-232 driver outputs 9, 18 -2v cc voltage generated by the charge pump 8 2 1, 3 terminals for negative charge-pump capacitor 5, 7 +2v cc voltage generated by the charge pump 3 +4.5v to +5.5v supply-voltage input terminals for positive charge-pump capacitor 2, 4 20 16 gnd t_in r_out r_in t_out v- c2+, c2- v+ c1+, c1- v cc n.c. no connection?ot internally connected 1, 6, 11, 16 __ function name pin dip/so/tssop lcc 11, 15 12, 15 connect pins together. c2+ name 14 8 +2v cc voltage generated by the charge pump v+ so c1- t_in r_out r_in t_out gnd v cc c1+ c2- v- 13 function 14 1, 2 rs-232 driver inputs make no connection to this pin. 3, 20 rs-232 receiver outputs 4, 19 rs-232 receiver inputs 1, 2 3, 20 5, 18 rs-232 transmitter outputs 6, 9 ground 7 +4.5v to +5.5v supply-voltage input 13 make no connection to this pin. 4,19 5,18 6, 9 11, 16 connect pins together. 10, 17 -2v cc voltage generated by the charge pump. connect pins together. 7 8 10, 16 12, 17 dip pin name function t_out rs-232 driver outputs r_in rs-232 receiver inputs r_out ttl/cmos receiver outputs. all receivers are inactive in shutdown. pin 1?, 19 5, 10, 13, 18, 24 t_in ttl/cmos driver inputs. internal pullups to v cc . gnd ground v cc +4.75v to +5.25v supply voltage en receiver enable?ctive low 6, 9, 14, 17, 23 7, 8, 15, 16, 22 11 12 20 shdn shutdown control?ctive high 21 6 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers max208e ________________________________________________pin descriptions (continued) max206e max207e v+ name function +2v cc generated by the charge pump t_out rs-232 driver outputs 11 r_in rs-232 receiver inputs r_out ttl/cmos receiver outputs. all receivers are inactive in shutdown. pin 1, 2, 3, 24 4, 16, 23 t_in ttl/cmos driver inputs. internal pullups to v cc . gnd ground v cc +4.5v to +5.5v supply voltage c1+, c1- terminals for positive charge-pump capacitor 5, 17, 22 6, 7, 18, 19 8 9 10, 12 en receiver enable?ctive low 20 c2+, c2- terminals for negative charge-pump capacitor v- -2v cc generated by the charge pump 13, 14 15 shdn shutdown control?ctive high 21 v+ name function +2v cc generated by the charge pump t_out rs-232 driver outputs 11 r_in rs-232 receiver inputs r_out ttl/cmos receiver outputs. all receivers are inactive in shutdown. pin 1, 2, 3, 20, 24 4, 16, 23 t_in ttl/cmos driver inputs. internal pullups to v cc . gnd ground c2+, c2- v cc +4.75v to +5.25v supply voltage terminals for negative charge-pump capacitor c1+, c1- terminals for positive charge-pump capacitor 5, 17, 22 6, 7, 18, 19, 21 8 v- -2v cc generated by the charge pump 13, 14 15 9 10, 12 v+ name function +2v cc generated by the charge pump t_out rs-232 driver outputs 11 r_in rs-232 receiver inputs r_out ttl/cmos receiver outputs. all receivers are inactive in shutdown. pin 1, 2, 20, 24 3, 7, 16, 23 t_in ttl/cmos driver inputs. internal pullups to v cc . gnd ground c2+, c2- v cc +4.5v to +5.5v supply voltage terminals for negative charge-pump capacitor c1+, c1- terminals for positive charge-pump capacitor 4, 6, 17, 22 5, 18, 19, 21 8 v- -2v cc generated by the charge pump 13, 14 15 9 10, 12 maxim integrated 7 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers v+ gnd max206e max211e max213e max241e 0.1f * v cc 0.1f * r1 to r5 t1 to t5 0.1f * c1+ c1- c2+ c2- v cc +5.5v t_out r_out 400k 5k i shdn 0v or +5.5v drive 0.1f * 0.1f * 3k +5.5v r_in t_in capacitors may be polarized or unpolarized ( ) are for max213e * 1f for max241e en (en) shdn (shdn) +5.5v (0v) v- +5.5v figure 1. shutdown-current test circuit (max206e, max211e/max213e/max241e) +3.5v en input output enable time +2.5v receiver output c l = 150pf receiver outputs output disable time v oh - 0.1v v oh v ol v ol + 0.1v r l = 1k note: polarity of en is reversed for the max213e +0.8v 0v +3v +3v en input 0v figure 2. receiver output enable and disable timing (max205e/max206e/max211e/max213e/max241e) 17 name function v- t_out rs-232 driver outputs -2v cc voltage generated by the charge pump r_in rs-232 receiver inputs 24 r_out ttl/cmos receiver outputs. for the max213e, receivers r4 and r5 are active in shutdown mode when en = 1. for the max211e and max241e, all receivers are inactive in shutdown. pin 1, 2, 3, 28 4, 9, 18, 23, 27 en t_in ttl/cmos driver inputs. only the max211e, max213e, and max241e have internal pullups to v cc. receiver enable?ctive high (max213e) gnd ground 25 v cc +4.5v to +5.5v supply voltage shdn c1+, c1- terminals for positive charge-pump capacitor 5, 8, 19, 22, 26 6, 7, 20, 21 10 shutdown control?ctive low (max213e) v+ +2v cc voltage generated by the charge pump c2+, c2- terminals for negative charge-pump capacitor 11 12, 14 13 15, 16 en receiver enable?ctive low (max211e, max241e) shdn shutdown control?ctive high (max211e, max241e) ________________________________________________pin descriptions (continued) max211e/max213e/max241e 8 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers v+ max2_ _e 0.1f * v cc 0.1f * t_ r_ 0.1f * c1+ c1- c2+ c2- v cc t_out r_out en (en) shdn (shdn) 400k 5k 0.1f * 0.1f * 3k +5v r_in t_in minimum slew-rate test circuit 0v (+5v) 0v (+5v) 2500pf v- v+ 0.1f * v cc 0.1f * r_ t_ 0.1f * c1+ c1- c2+ c2- v cc t_out r_out en (en) shdn (shdn) 400k 5k 0.1f * 0.1f * 7k +5v r_in t_in maximum slew-rate test circuit 0v (+5v) 0v (+5v) 50pf v- ( ) are for max213e * 1f for max232e/max241e max2_ _e transmitter input pull-up resistors, enable, and shutdown are not provided on the max202e, max203e, and max232e. enable and shutdown are not provided on the max207e and max208e. figure 3. transition slew-rate circuit _______________detailed description the max202e?ax213e, max232e/max241e consist of three sections: charge-pump voltage converters, drivers (transmitters), and receivers. these e versions provide extra protection against esd. they survive ?5kv discharges to the rs-232 inputs and outputs, tested using the human body model. when tested according to iec1000-4-2, they survive 8kv contact- discharges and ?5kv air-gap discharges. the rugged e versions are intended for use in harsh environments or applications where the rs-232 connection is frequently changed (such as notebook computers). the standard (non-?? max202, max203, max205 max208, max211, max213, max232, and max241 are recommended for applications where cost is critical. +5v to ?0v dual charge-pump voltage converter the +5v to ?0v conversion is performed by dual charge-pump voltage converters (figure 4). the first charge-pump converter uses capacitor c1 to double the +5v into +10v, storing the +10v on the output filter capacitor, c3. the second uses c2 to invert the +10v into -10v, storing the -10v on the v- output filter capacitor, c4. in shutdown mode, v+ is internally connected to v cc by a 1k pull-down resistor, and v- is internally connected to ground by a 1k pull up resistor. rs-232 drivers with v cc = 5v, the typical driver output voltage swing is ?v when loaded with a nominal 5k rs-232 receiver. the output swing is guaranteed to meet eia/tia-232e and v.28 specifications that call for ?v minimum output levels under worst-case conditions. these include a 3k load, minimum v cc , and maximum operating temperature. the open-circuit output voltage swings from (v+ - 0.6v) to v-. input thresholds are cmos/ttl compatible. the unused drivers?inputs on the max205e?ax208e, max211e, max213e, and max241e can be left unconnected because 400k pull up resistors to v cc are included on-chip. since all drivers invert, the pull up resistors force the unused drivers?outputs low. the max202e, max203e, and max232e do not have pull up resistors on the transmitter inputs. maxim integrated 9 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers when in low-power shutdown mode, the max205e/ max206e/max211e/max213e/max241e driver outputs are turned off and draw only leakage currents?ven if they are back-driven with voltages between 0v and 12v. below -0.5v in shutdown, the transmitter output is diode-clamped to ground with a 1k series impedance. rs-232 receivers the receivers convert the rs-232 signals to cmos-logic output levels. the guaranteed 0.8v and 2.4v receiver input thresholds are significantly tighter than the ?v thresholds required by the eia/tia-232e specification. this allows the receiver inputs to r espond to ttl/cmos- logic levels, as well as rs-232 levels. the guaranteed 0.8v input low threshold ensures that receivers shorted to ground have a logic 1 output. the 5k input resistance to ground ensures that a receiver with its input left open will also have a logic 1 output. receiver inputs have approximately 0.5v hysteresis. this provides clean output transitions, even with slow rise/fall-time signals with moderate amounts of noise and ringing. in shutdown, the max213e? r4 and r5 receivers have no hysteresis. shutdown and enable control (max205e/max206e/max211e/ max213e/max241e) in shutdown mode, the charge pumps are turned off, v+ is pulled down to v cc , v- is pulled to ground, and the transmitter outputs are disabled. this reduces supply current typically to 1? (15? for the max213e). the time required to exit shutdown is under 1ms, as shown in figure 5. receivers all max213e receivers, except r4 and r5, are put into a high-impedance state in shutdown mode (see tables 1a and 1b). the max213e? r4 and r5 receivers still function in shutdown mode. these two awake-in- shutdown receivers can monitor external activity while maintaining minimal power consumption. the enable control is used to put the receiver outputs into a high-impedance state, to allow wire-or connection of two eia/tia-232e ports (or ports of different types) at the uart. it has no effect on the rs-232 drivers or the charge pumps. note: the enable control pin is active low for the max211e/max241e ( en ), but is active high for the max213e (en). the shutdown control pin is active high for the max205e/max206e/max211e/max241e (shdn), but is active low for the max213e ( shdn ). 1 s1 f s2 s5 s6 1 3 2 s3 s4 s s 4 1 nd nd 2 2 at f (h) max202e max211e/213e max232e max203e 230 max205e20e 200 200 140 max241e 30 230 figure 4. charge-pump diagram 10 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers v+ v- 200s/div 3v 0v 10v 5v 0v -5v -10v shdn max211e figure 5. max211e v+ and v- when exiting shutdown (0.1? capacitors) x = don't care. * active = active with reduced performance shdn e e n n operation status tx rx 0 0 normal operation all active all active 0 1 normal operation all active all high-z 1 x shutdown all high-z all high-z table 1a. max205e/max206e/max211e/ max241e control pin configurations table 1b. max213e control pin configurations the max213e? receiver propagation delay is typically 0.5? in normal operation. in shutdown mode, propagation delay increases to 4? for both rising and falling transitions. the max213e? receiver inputs have approximately 0.5v hysteresis, except in shutdown, when receivers r4 and r5 have no hysteresis. when entering shutdown with receivers active, r4 and r5 are not valid until 80? after shdn is driven low. when coming out of shutdown, all receiver outputs are invalid until the charge pumps reach nominal voltage levels (less than 2ms when using 0.1? capacitors). ?5kv esd protection as with all maxim devices, esd-protection structures are incorporated on all pins to protect against electrostatic discharges encountered during handling and assembly. the driver outputs and receiver inputs have extra protection against static electricity. maxim? engineers developed state-of-the-art structures to protect these pins against esd of ?5kv without damage. the esd structures withstand high esd in all states: normal operation, shutdown, and powered down. after an esd event, maxim? e versions keep working without latchup, whereas competing rs-232 products can latch and must be powered down to remove latchup. esd protection can be tested in various ways; the transmitter outputs and receiver inputs of this product family are characterized for protection to the following limits: 1) ?5kv using the human body model 2) ?kv using the contact-discharge method specified in iec1000-4-2 3) ?5kv using iec1000-4-2? air-gap method. esd test conditions esd performance depends on a variety of conditions. contact maxim for a reliability report that documents test set-up, test methodology, and test results. human body model figure 6a shows the human body model, and figure 6b shows the current waveform it generates when discharged into a low impedance. this model consists of a 100pf capacitor charged to the esd voltage of interest, which is then discharged into the test device through a 1.5k resistor. s s h h d d n n en operation status tx 1? 0 0 shutdown all high-z 0 1 shutdown all high-z 1 0 normal operation 1 1 normal operation all active all active active 1? 4, 5 high-z active high-z high-z high-z active* high-z rx maxim integrated 11 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers iec1000-4-2 the iec1000-4-2 standard covers esd testing and performance of finished equipment; it does not specifically refer to integrated circuits. the max202e/max203e?ax213e, max232e/max241e help you design equipment that meets level 4 (the highest level) of iec1000-4-2, without the need for additional esd-protection components. the major difference between tests done using the human body model and iec1000-4-2 is higher peak current in iec1000-4-2, because series resistance is lower in the iec1000-4-2 model. hence, the esd withstand voltage measured to iec1000-4-2 is generally lower than that measured using the human body model. figure 7b shows the current waveform for the 8kv iec1000-4-2 level-four esd contact-discharge test. the air-gap test involves approaching the device with a charged probe. the contact-discharge method connects the probe to the device before the probe is energized. machine model the machine model for esd tests all pins using a 200pf storage capacitor and zero discharge resistance. its objective is to emulate the stress caused by contact that occurs with handling and assembly during manufacturing. of course, all pins require this protection during manufacturing, not just rs-232 inputs and outputs. therefore, after pc board assembly, the machine model is less relevant to i/o ports. charge-current- limit resistor discharge resistance storage capacitor c s 150pf r c 50m to 100m r d 330 high- voltage dc source device under test figure 7a. iec1000-4-2 esd test model t r = 0.7ns to 1ns 30ns 60ns t 100% 90% 10% i peak i figure 7b. iec1000-4-2 esd generator current waveform charge-current- limit resistor discharge resistance storage capacitor c s 100pf r c 1m r d 1500 high- voltage dc source device under test figure 6a. human body esd test model i p 100% 90% 36.8% t rl time t dl current waveform peak-to-peak ringing (not drawn to scale) i r 10% 0 0 amperes figure 6b. human body model current waveform 12 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers __________applications information capacitor selection the capacitor type used for c1?4 is not critical for proper operation. the max202e, max206?ax208e, max211e, and max213e require 0.1? capacitors, and the max232e and max241e require 1? capacitors, although in all cases capacitors up to 10? can be used without harm. ceramic, aluminum- electrolytic, or tantalum capacitors are suggested for the 1? capacitors, and ceramic dielectrics are suggested for the 0.1? capacitors. when using the minimum recommended capacitor values, make sure the capacitance value does not degrade excessively as the operating temperature varies. if in doubt, use capacitors with a larger (e.g., 2x) nominal value. the capacitors?effective series resistance (esr), which usually rises at low temperatures, influences the amount of ripple on v+ and v-. use larger capacitors (up to 10?) to reduce the output impedance at v+ and v-. this can be useful when ?tealing?power from v+ or from v-. the max203e and max205e have internal charge-pump capacitors. bypass v cc to ground with at least 0.1?. in applications sensitive to power-supply noise generated by the charge pumps, decouple v cc to ground with a capacitor the same size as (or larger than) the charge- pump capacitors (c1?4). v+ and v- as power supplies a small amount of power can be drawn from v+ and v-, although this will reduce both driver output swing and noise margins. increasing the value of the charge-pump capacitors (up to 10?) helps maintain performance when power is drawn from v+ or v-. driving multiple receivers each transmitter is designed to drive a single receiver. transmitters can be paralleled to drive multiple receivers. driver outputs when exiting shutdown the driver outputs display no ringing or undesirable transients as they come out of shutdown. high data rates these transceivers maintain the rs-232 ?.0v minimum driver output voltages at data rates of over 120kbps. for data rates above 120kbps, refer to the transmitter output voltage vs. load capacitance graphs in the typical operating characteristics . communication at these high rates is easier if the capacitive loads on the transmitters are small; i.e., short cables are best. table 2. summary of eia/tia-232e, v.28 specifications parameter conditions eia/tia-232e, v.28 specifications 0 level 3k to 7k load +5v to +15v data rate 3k? r l 7k, c l 2500pf up to 20kbps +3v to +15v instantaneous slew rate, max 3k?r l 7k, c l 2500pf 30v/? driver output short-circuit current, max 100ma transition rate on driver output v.28 1ms or 3% of the period driver output resistance -2v < v out < +2v 300 eia/tia-232e 4% of the period driver output level, max no load ?5v driver output voltage 3k to 7k load -5v to -15v 0 level 1 level 1 level receiver input level ?5v receiver input voltage -3v to -15v maxim integrated 13 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) top view 1 4 5 ttl/cmos inputs ttl/cmos outputs 11 10 12 9 3 gnd c1- c2+ 5k 5k c2- t1in t2in r2out r1out v cc +5v to +10v voltage doubler +10v to -10v voltage inverter 16 2 6 14 7 13 8 0.1f 0.1f* 16v 0.1f* 6.3v 0.1f* 16v 0.1f* 6.3v c1+ rs-232 outputs rs-232 inputs -10v +10v v+ +5v input v- t1out r1in r2in t2out t1 15 t2 r1 r2 pin numbers on typical operating circuit refer to dip/so/tssop package, not lcc. * 1.0f capacitors, max232e only. 16 15 14 13 12 11 10 9 1 2 3 4 5 6 7 8 v cc gnd t1out r1in c2+ c1- v+ c1+ max202e max232e r1out t1in t2in r2out r2in t2out v- c2- dip/so/tssop table 3. db9 cable connections commonly used for eia/tia-232e and v.24 asynchronous interfaces pin connection 2 receive data (rd) data from dce 3 transmit data (td) data from dte 4 data terminal ready handshake from dte 5 signal ground reference point for signals 6 data set ready (dsr) handshake from dce 7 request to send (rts) handshake from dte 8 clear to send (cts) handshake from dce 9 ring indicator handshake from dce 1 received line signal detector (sometimes called carrier detect, dcd) handshake from dce 14 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) 20 19 18 17 16 15 14 13 1 2 3 4 5 6 7 8 r2out r2in t2out v- r1in r1out t1in t2in c2- c2+ v+ (c1-) c1- (c1+) c1+ (v+) v cc gnd t1out 12 11 9 10 v- (c2+) c2+ (c2-) c2- (v-) gnd dip/so max203e top view ttl/cmos inputs ttl/cmos outputs 2 1 3 20 gnd gnd 400k 5k 5k t1in t2in r2out r1out v cc 7 5 18 4 19 0.1f rs-232 outputs rs-232 inputs +5v 400k +5v +5v input t1out r1in r2in t2out t1 9 6 t2 r1 r2 v- v- c1- c1+ 8(13) 13(14) 12(10) 17 14(8) do not make connection to these pins internal -10v power supply internal +10v power supply v+ c2- c2- c2+ c2+ 11 15 16 10 (11) pin numbers in () are for so package. (12) maxim integrated 15 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) t4out t3out t1out t2out r2in r2out t2in t1in r1out r1in gnd v cc dip top view max205e 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 r3in r3out t5in shdn en t5out r4in r4out t4in t3in r5out r5in v cc ttl/cmos inputs gnd shdn +5v input +5v t2out 400k t2in t2 4 +5v t3out 400k t3in t3 2 +5v t4out 400k t4in t4 1 +5v t5out 400k t5in t5 19 5k r1 r1out r1in 5k r2 r2out r2in 5k r3 r3out r3in 8 7 15 16 22 9 6 23 10 5 24 5k r4out r4in 17 18 5k r5 r5out r5in 14 13 en 20 21 11 12 ttl/cmos outputs +5v t1out 400k t1in t1 3 rs-232 outputs rs-232 inputs r4 0.1f 16 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) t3out t1out t2out r1in r1out t2in t1in gnd v cc c1+ v+ c1- dip/so/ssop top view max206e 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 t4out r2in r2out shdn en t4in t3in r3out r3in v- c2- c2+ v cc ttl/cmos inputs gnd shdn +5v input +5v t1out 400k t1in t1 2 +5v t2out 400k t2in t2 3 +5v t3out 400k t3in t3 1 +5v t4out 400k t4in t4 24 5k r1 r1out r1in 5k r2 r2out r2in 5k r3 r3out r3in 7 6 18 19 5 22 17 4 23 16 en 20 21 8 9 ttl/cmos outputs rs-232 outputs rs-232 inputs 0.1f v+ 0.1f 6.3v 0.1f 16v c1+ c1- 0.1f 6.3v 0.1f 16v v- 10 12 13 14 c2+ c2- 11 15 +5v to +10v voltage doubler +10v to -10v voltage inverter maxim integrated 17 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) t3out t1out t2out r1in r1out t2in t1in gnd v cc c1+ v+ c1- dip/so/ssop top view max207e 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 t4out r2in r2out t5in t5out t4in t3in r3out r3in v- c2- c2+ v cc ttl/cmos inputs gnd +5v input +5v t2out 400k t2in t2 +5v t1out 400k t1in t1 3 +5v t3out 400k t3in t3 1 +5v t4out 400k t4in t4 24 +5v t5out 400k t5in t5 20 5k r1 r1out r1in 5k r2 r2out r2in 5k r3 r3out r3in 7 6 18 19 21 5 22 17 4 23 16 8 9 ttl/cmos outputs rs-232 outputs rs-232 inputs 0.1f v+ 0.1f 6.3v 0.1f 16v c1+ c1- 0.1f 6.3v 0.1f 16v v- 10 12 13 14 c2+ c2- 11 15 +5v to +10v voltage doubler +10v to -10v voltage inverter 2 18 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) t2out t1out r2in r2out t1in r1out r1in gnd v cc c1+ v+ c1- dip/so/ssop top view max208e 1 2 3 4 5 6 7 8 9 10 11 12 24 23 22 21 20 19 18 17 16 15 14 13 t3out r3in r3out t4in t4out t3in t2in r4out r4in v- c2- c2+ v cc ttl/cmos inputs gnd +5v input +5v t1out 400k t1in t1 2 +5v t2out 400k t2in t2 1 +5v t3out 400k t3in t3 24 +5v t4out 400k t4in t4 20 5k r1 r1out r1in 5k r2 r2out r2in 5k 5k r3 r3out r3in 5 18 19 21 6 4 22 7 3 23 8 9 ttl/cmos outputs rs-232 outputs rs-232 inputs r4 r4out r4in 17 16 0.1f v+ 0.1f 6.3v 0.1f 16v c1+ c1- 0.1f 6.3v 0.1f 16v v- 10 12 13 14 c2+ c2- 11 15 +5v to +10v voltage doubler +10v to -10v voltage inverter maxim integrated 19 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ____________pin configurations and typical operating circuits (continued) t3out t1out t2out r2in r2out t2in t1in r1out r1in gnd v cc c1+ v+ c1- so/ssop top view max211e max213e max241e 1 2 3 4 5 6 7 8 9 10 11 12 13 14 28 27 26 25 24 23 22 21 20 19 18 17 16 15 t4out r3in r3out shdn (shdn) en (en) r4in r4out t4in t3in r5out r5in v- c2- c2+ v+ 0.1f * 6.3v v cc 0.1f 0.1f * 16v c1+ c1- 0.1f * 6.3v 0.1f * 16v ttl/cmos inputs gnd shdn (shdn) v- 12 14 15 16 +5v input c2+ c2- 13 17 +5v t1out 400k t1in t1 2 +5v t2out 400k t2in t2 3 +5v t3out 400k t3in t3 1 +5v t4out 400k t4in t4 28 5k r1 r1out r1in 5k r2 r2out r2in 5k r3 r3out r3in 7 6 20 21 8 5 26 9 4 27 5k r4out r4in 22 23 5k r5 r5out r5in 19 18 en (en) 24 25 10 +5v to +10v voltage doubler +10v to -10v voltage inverter 11 ( ) are for max213e only * 1.0f capacitors, max241e only ttl/cmos outputs rs-232 outputs rs-232 inputs r4 20 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ordering information (continued) * dice are specified at t a = +25?. max241eeai -40? to +85? 28 ssop 28 so part t t e e m m p p r r a a n n g g e e pin-package max213ecwi 0? to +70? max213ecai 0? to +70? 28 ssop max241eewi -40? to +85? 28 so 16 wide so max232ecwe 0? to +70? max232ec/d 0? to +70? dice* max232eese -40? to +85? 16 narrow so max241ecai 0? to +70? 28 ssop max241ecwi 0? to +70? 28 so MAX232EEWE -40? to +85? 16 wide so max232eepe -40? to +85? 16 plastic dip max213eeai -40? to +85? 28 ssop max232ecse 0? to +70? 16 narrow so max232ecpe 0? to +70? 16 plastic dip max213eewi -40? to +85? 28 so 16 wide so 0? to +70? max202ecwe 16 plastic dip -40? to +85? max202eepe 16 narrow so -40? to +85? max202eese 16 wide so -40? to +85? max202eewe dice* 0? to +70? max202ec/d 20 plastic dip -40? to +85? max203eepp 24 wide plastic dip 0? to +70? max205ecpg 24 wide plastic dip -40? to +85? max205eepg 24 narrow plastic dip 0? to +70? max206ecng 20 so -40? to +85? max203eewp 20 so 0? to +70? max203ecwp 0? to +70? max203ecpp 20 plastic dip 24 so 0? to +70? max206ecwg pin-package temp range part 24 ssop 0? to +70? max206ecag 24 narrow plastic dip -40? to +85? max206eeng 24 so -40? to +85? max206eewg 24 ssop -40? to +85? max206eeag 24 narrow plastic dip 0? to +70? max207ecng max207ecwg 0? to +70? 24 so max207ecag 0? to +70? 24 ssop max207eeng -40? to +85? 24 narrow plastic dip max207eewg -40? to +85? 24 so max207eeag -40? to +85? 24 ssop 24 narrow plastic dip max208ecng 0? to +70? 28 so max211ecwi 0? to +70? 28 ssop max211ecai 0? to +70? 24 ssop max208eeag -40? to +85? 24 so max208eewg -40? to +85? 24 so max208ecwg 0? to +70? 24 ssop max208ecag 0? to +70? 24 narrow plastic dip max208eeng -40? to +85? 28 so max211eewi -40? to +85? 28 ssop max211eeai -40? to +85? 16 tssop 0? to +70? max202ecue 16 tssop -40? to +85? max202eeue maxim integrated 21 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers __________________________________________________________chip topographies ___________________chip information c1- v+ c1+ v cc r2in t2out r2out 0.117" (2.972mm) 0.080" (2.032mm) v- c2+ c2- t2in t1out r1in r1out t1in gnd r5in v- c2- c2+ c1- v+ c1+ v cc t4out r3in t3out t1out 0.174" (4.420mm) 0.188" (4.775mm) t4in r5out r4out t3in r4in en (en) shdn (shdn) r3out t2out gnd r1in r1out t2in r2out r2in t1in ( ) are for max213e only transistor count: 123 substrate connected to gnd transistor count: 542 substrate connected to gnd max202e/max232e max211e/max213e/max241e max205e/max206e/max207e/max208e transistor count: 328 substrate connected to gnd 22 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers pdipn.eps package information (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline information go to www.maxim-ic.com/packages .) maxim integrated 23 max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers ssop.eps package outline, ssop, 5.3 mm 1 1 21-0056 c rev. document control no. approval title: notes: 1. d&e do not include mold flash. 2. mold flash or protrusions not to exceed .15 mm (.006"). 3. controlling dimension: millimeters. 4. meets jedec mo150. 5. leads to be coplanar within 0.10 mm. 7.90 h l 0 0.301 0.025 8 0.311 0.037 0 7.65 0.63 8 0.95 max 5.38 millimeters b c d e e a1 dim a see variations 0.0256 bsc 0.010 0.004 0.205 0.002 0.015 0.008 0.212 0.008 inches min max 0.078 0.65 bsc 0.25 0.09 5.20 0.05 0.38 0.20 0.21 min 1.73 1.99 millimeters 6.07 6.07 10.07 8.07 7.07 inches d d d d d 0.239 0.239 0.397 0.317 0.278 min 0.249 0.249 0.407 0.328 0.289 max min 6.33 6.33 10.33 8.33 7.33 14l 16l 28l 24l 20l max n a d e a1 l c h e n 12 b 0.068 package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline information go to www.maxim-ic.com/packages .) 24 maxim integrated max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers soicw.eps package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. package outline, .300" soic 1 1 21-0042 b rev. document control no. approval title: 0.512 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 0.496 d d min dim d inches max 12.60 13. 00 millimeters min max 20 12.60 13. 00 millimeters min max 20 12.60 13. 00 millimeters min max 20 12.60 13. 00 millimeters min max 20 12.60 13. 00 millimeters min max 20 12.60 13. 00 millimeters min max 20 ac 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 0.447 0.463 ab 11.75 11.35 18 0.398 0.413 aa 10.50 10.10 16 n ms013 side view h 0.419 0.394 10.00 10. 65 e 0 .0 50 1.27 d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.614 0.598 15.20 24 15.6 0 ad d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae d 0.713 0.697 17.70 28 18.1 0 ae 0 -8 0 -8 0 -8 variations: top view front view max 0.012 0.104 0.019 0.299 0.013 inches 0.291 0.009 e c dim 0.014 0.004 b a1 min 0.093 a 0.23 7.40 7.60 0.32 millimeters 0.10 0.35 2.35 min 0.49 0.30 max 2.65 0.050 0.016 l 0.40 1.27 h 0.419 0.394 10.00 10.65 e 0.050 1.27 h e n d a1 b e a c l 1 tssop4.40mm.eps package information (continued) (the package drawing(s) in this data sheet may not reflect the most current specifications. for the latest package outline information go to www.maxim-ic.com/packages .) maxim integrated  max202e?max213e, max232e/max241e
?5kv esd-protected, +5v rs-232 transceivers 26 maxim integrated 160 rio robles, san jose, ca 95134 usa 1-408-601-1000 maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a maxim product. no circuit patent licenses are implied. maxim reserves the right to change the circuitry and specifications without notice at any time. the parametric values (min and max limits) shown in the electrical characteristics table are guaranteed. other parametric values quoted in this data sheet are provided for guidance. ? 2005 maxim integrated the maxim logo and maxim integrated are trademarks of maxim integrated products, inc. max202e?max213e, max232e/max241e


▲Up To Search▲   

 
Price & Availability of MAX232EEWE

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X